Installing Python packages¶
Over the past decade, the Python programming language and Scientific Python packages like NumPy, SciPy, JAX, and PyTorch have gained a lot of popularity in the data science and HPC communities. We do support using Scientific Python packages on LUMI, however care must be taken to install such packages in a way that plays well with LUMI.
Please don't install Python packages directly
In order to provide the best user experience, it is strongly
discouraged to install Python packages directly to the user home folder,
/scratch
, /project
, etc. using Conda, pip, or similar
package management tools. Please read this page carefully for better
alternatives.
A Python installation usually consists of the Python interpreter, the Python standard library and one or more third party Python packages. Such Python packages may include both compiled code and a lot of so-called Python modules, i.e. a lot of small files containing Python code. A typical Conda environment tends to contain tens to hundreds of thousands of relatively small files.
Installing such a large number of small files to the user home folder or shared
locations like /scratch
, /project
, or even /flash
, and trying to load
them from multiple processes at the same time, puts a lot of strain on the
Lustre file system serving these storage locations. Lustre simply
isn't designed for such use cases. Thus, in order to maintain good file system
performance for all users (it is a shared file system), care must be taken when
installing Python packages on LUMI.
Which installation method should I use then?
The best way to get access to a Python installation on LUMI depends on the use case. Below we provide an overview of recommended ways to get access to Python installations on LUMI.
The default Python is the OS Python
When you log into LUMI, running python3
without loading a module or using
a container will result in using the operating system Python installation.
This is quite an old Python installation (version 3.6) without any Scientific
Python packages - which is likely not what you want.
Generally recommended installation methods¶
In general, we recommend using Singularity/Apptainer containers for managing Python installations. Using a container solves the "many small files" performance problem and makes it easy to manage multiple different Python environments at the same time. To use a container, you may either use an existing container or build a container taylored to your needs.
Use an existing container¶
If somebody is already publishing a container which includes the Python pacakages you need, e.g. this PyTorch ROCm container, you may pull and use that container.
Use a container you build specifically tailored to your needs¶
If you are not able to find an existing container that suits your needs, you may build your own. If you are used to managing Conda/pip environments locally, you may use cotainr to build a container based on a Conda environment file for use on LUMI.
Installation methods recommended for specific use cases¶
For certain use cases, there may be better and/or easier alternatives to using a container:
- If you only need very few (less than 5, including dependencies) extra Python packages, you may use the pre-installed cray-python or install a pip environment for use with a container.
- If your workflow relies on a fixed environment in which you run a single binary/script and/or need intertwining with the host software environment, you may wrap it using the LUMI container wrapper.
- If you are used to the managed software stacks on the CSC HPC systems, you may prefer to use pre-installed Python packages in the CSC software stack.
Use the cray-python module¶
As part of the LUMI software stack, we provide the
cray-python
module which contains some basic Scientific Python packages like
NumPy and SciPy (built against Cray LibSci), mpi4py (built against Cray MPICH),
Pandas, and Dask. If what you need is such a basic Cray optimized Scientific
Python environment and, possibly, a few extra packages, you may load the
cray-python
module and install the few extra packages on the file systems in
a pip virtual environment.
Use an existing container with a pip virtual environment¶
If you have an existing container but need a few extra packages, you may install such packages on the file systems in pip virtual environment and use them with the container. An example of this approach is given in the LUMI PyTorch guide.
Use the LUMI container wrapper¶
We provide the LUMI container wrapper which may be used to solve the "many small files" performance problem by wrapping a Conda/pip installation. This is a convenient way to get access to a performant Python installation if you only run a single binary/script and/or need to intertwine with the host software environment without having to explicitly deal with containers. See this GitHub issues for a more detailed discussion of when this approach may be preferred over using a container directly.
Use the CSC software stack¶
CSC provides a small additional software stack on LUMI, similar to the software stacks provided on the Finnish HPC systems, which contains some Python packages. Please note that this software stack is only supported by CSC, not the LUMI User Support Team (LUST).
Discouraged installation methods¶
We strongly discourage installing large collections of Python packages directly on the file systems on LUMI, i.e.
- Don't install conda/pip environments directly on the file systems.
- Don't install pip virtual environments directly on the file systems using the OS python.
- Don't install Python packages directly on the file systems using Easybuild.
- Don't install Python packages directly on the file systems using Spack.